Characterization of solid catalysts

1. Introduction

Prof dr J W (Hans) Niemantsverdriet
Schuit Institute of Catalysis
How does a catalytic reaction proceed?

A + B → P

Answer: via a cycle of elementary reaction steps in which molecules react in a complex formed with sites on the catalyst, which are regenerated at the end of the cycle.
What is a catalyst?

Catalysts

- increase the rate of a reaction
- without being consumed in the process

- offer alternative, energetically favorable pathways for reactions
- enable reactions to occur under industrially achievable conditions
- allow selective production routes without or with less undesirable byproducts
- are the work horses of the chemical industry
- are the key enablers for sustainable (green)production

© J.W. Niemantsverdriet, TU/e, Eindhoven, The Netherlands
length and time scales in catalytic processes

- **microscopic**: catalytic surface, catalytically active particles on a support
- **mesoscopic**: shaped catalyst particles
- **macroscopic**: catalyst bed in a reactor

Supported catalyst

Metal – support combination determines
• particle morphology
 • crystal planes exposed
 • steps, kinks, etc
 • type of interface with support
• degree of reduction
• particle size
• stability against sintering
• involvement of support in reactions
Requirements of a successful catalyst

• High activity per unit volume in the reactor
• High selectivity at high conversion; no byproducts
• Long life time
• Regenerable
• Reproducible preparation & activation
• Thermal stability (no sintering)
• High mechanical strength
• High attrition resistance

© J.W. Niemantsverdriet, TU/e, Eindhoven, The Netherlands
Aims of Catalyst Characterization

Fundamental research:
- composition & structure
- of the catalytic surface
- under reaction conditions
- in atomic detail

Applied research:
- identification of properties that discriminate between poor and successful catalysts
Catalyst Characterization

What do we want to know about a supported catalyst?

- **Composition**
 - XPS, XANES, XRD
 - ICP, AAS

- **Surface Composition**
 - LEIS, XPS, SIMS

- **Particle size**
 - Electron Microscopy
 - H₂ chemisorption
 - XRD line broadening

- **Surface Area**
 - Total: BET
 - Metal: H₂ or CO chemisorption
 - Pore size distribution:
 - Hg porosimetry

- **Morphology**
 - Particles: TEM
 - Overall: SEM

- **Adsorbed Gases**
 - FTIR, DRIFTS, TPD

- **Structure**
 - XRD
 - XPS, EXAFS, TEM

- **Degree of Reduction**
 - TPR, XPS, XANES

© J.W. Niemantsverdriet,
TU/e, Eindhoven, The Netherlands
Things that Matter in a Supported Catalyst:

Structural Parameters
- Particle orientation and size
- Particle shape and structure: facets, edges, corners, steps, defects
- Structure of particle-support interface
- Type and site of catalyst poisons
- Type and site of catalyst promoters
- Structure of support surface and support defects

Kinetic Effects
- Restructuring effects (particle reshaping structural flexibility)
- Confinement effects (limited number of surface and bulk sites, coverage fluctuations)
- Communication effects (surface diffusion between different sites)
- Geometric effects (specific sites, e.g., edges, corners, facets, site blocking effects, structural effects of promoters...)
- Electronic effects (electron confinement, electronic support / promoter interaction...)
- Support effects (adsorption, diffusion, reaction on support / promoter)
‘All’ Characterization Techniques can be derived from:

- Energy
- Intensity
- Spatial configuration
- Time structure
- Temperature
-
How often are techniques used

<table>
<thead>
<tr>
<th>Technique</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>XRD</td>
<td>18.4</td>
</tr>
<tr>
<td>Adsorption</td>
<td>17.4</td>
</tr>
<tr>
<td>XPS</td>
<td>10.0</td>
</tr>
<tr>
<td>TP Techniques</td>
<td>9.2</td>
</tr>
<tr>
<td>Infrared</td>
<td>7.3</td>
</tr>
<tr>
<td>TEM</td>
<td>6.9</td>
</tr>
<tr>
<td>SEM</td>
<td>4.3</td>
</tr>
<tr>
<td>UV-vis</td>
<td>4.3</td>
</tr>
<tr>
<td>NMR</td>
<td>3.6</td>
</tr>
<tr>
<td>Raman</td>
<td>3.2</td>
</tr>
<tr>
<td>ESR</td>
<td>2.0</td>
</tr>
<tr>
<td>EXAFS</td>
<td>1.9</td>
</tr>
<tr>
<td>XANES</td>
<td>1.5</td>
</tr>
<tr>
<td>EDX</td>
<td>1.2</td>
</tr>
<tr>
<td>Mossbauer</td>
<td>0.8</td>
</tr>
<tr>
<td>Calorimetry</td>
<td>0.4</td>
</tr>
<tr>
<td>ISS / LEIS</td>
<td><0.1</td>
</tr>
<tr>
<td>Neutron Scattering</td>
<td><0.1</td>
</tr>
<tr>
<td>SIMS</td>
<td><0.1</td>
</tr>
</tbody>
</table>

Journals:
- Applied Catalysis A & B
- Catalysis Letters
- Journal of Catalysis
 - Jan 2002 and Oct 2006

Total Number of Articles: 8112
In situ or under vacuum?

<table>
<thead>
<tr>
<th>reaction conditions</th>
<th>real catalyst</th>
<th>single crystal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>XRD, TP techniques</td>
<td>Infrared TP techniques</td>
</tr>
<tr>
<td></td>
<td>Infrared and Raman</td>
<td>STM, AFM</td>
</tr>
<tr>
<td></td>
<td>EXAFS, XANES, AFM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mossbauer, ESR, NMR</td>
<td></td>
</tr>
<tr>
<td>vacuum</td>
<td>XPS, SIMS, SNMS</td>
<td>all surface science techniques</td>
</tr>
<tr>
<td></td>
<td>LEIS, RBS, TEM, SEM</td>
<td></td>
</tr>
</tbody>
</table>

© J.W. Niemantsverdriet, TU/e, Eindhoven, The Netherlands
Download the handout for this lecture from www.catalysiscourse.com

Read more in

Spectroscopy in Catalysis: An Introduction, Third Edition

J. W. Niemantsverdriet

Copyright 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-31651-9

NB CHAPTER ONE AVAILABLE ON WEBSITE COURSE FOR FREE

gives many examples and references to the literature

© J.W. Niemantsverdriet, TU/e, Eindhoven, The Netherlands

Version 2000

Technische Universiteit Eindhoven
University of Technology